

M62215FP

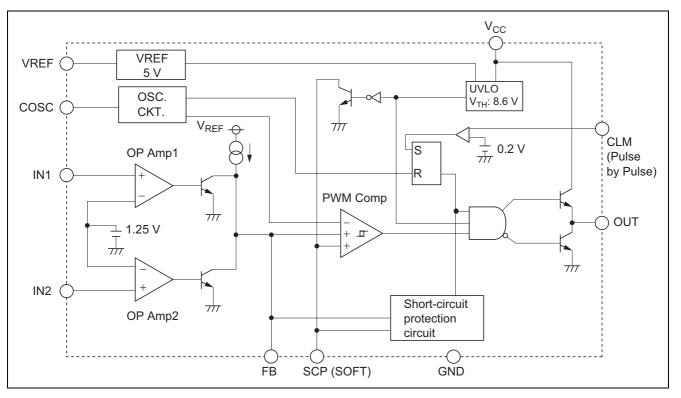
General Purpose Multifunction DC/DC Converter

REJ03D0844-0201 Rev.2.01 Nov 14, 2007

Description

This IC is designed as general purpose multi-function DC/DC converter and is optimum also for back-light control for LCD. Small 10-pin package containing many functions simplifies peripheral circuits and set design.

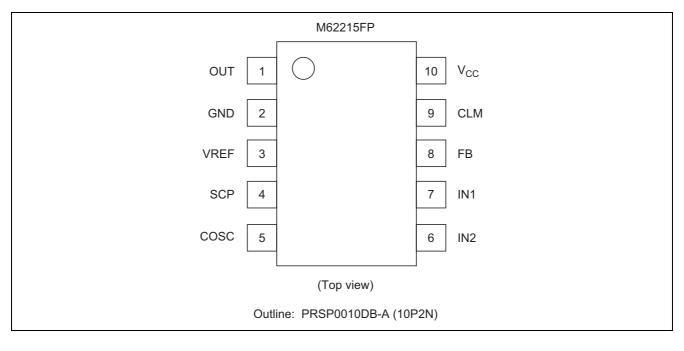
Priority control circuit contained in 2 channel input allows for simpler control when back-light is on and during the stable state.


Features

- Wide operating voltage range: 8.6 to 25 V
- High precision reference voltage: $5 V \pm 1\%$
- 2 channel priority control operation ("High" input prioritized)
- High speed switching operation (500 kHz)
- Output short-circuit protection circuit, ON/OFF control, Dead time control, Soft start operation.
- Small size 10-pin SOP package
- High speed pulse-by-pulse current limit
- Totem-pole output stage Output current I₀ (peak): ±1 A

Application

Back-light control for general electronic products such as personal computers, word processors, and portable equipments.


Block Diagram

RENESAS

Pin Arrangement

Preliminary: Some limits are subject to change

Absolute Maximum Ratings

			$(Ta = 25^{\circ}C, unless otherwise specified)$		
ltem Sym		Ratings	Units	Conditions	
Supply voltage	V _{CC}	26	V		
Output voltage	Vo	26	V		
Output current	lo	150	mA	Continuous	
		1.0	A	Peak	
Power dissipation	Pd	440	mW		
Thermal derating	Kθ	4.4	mW/°C		
Operating temperature	Topr	-20 to +85	°C		
Storage temperature	Tstg	-40 to +150	°C		

Electrical Characteristics

	Item	Symbol	Limits				
Block			Min	Тур	Max	Units	Test Condition
All	Supply voltage range	V _{CC}	VTHON	—	25	V	
	Circuit current	ICC ST	7.5	9.5	12.5	mA	I _{REF} = no load
Ref. voltage block	Reference voltage	V _{REF}	4.95	5.00	5.05	V	
	Max. reference current	I _{REF}	-10	_	—	mA	
	Line regulation	LINE	0.0	2.5	12.0	mV	V_{CC} = 8.6 to 15 V
Error Amp. block	Input bias current	IB	-500	_	—	nA	VIN1 = 1 V, VIN2 = 1 V
	Open loop gain	AV	—	70	—	dB	
	Gain-bandwidth product	GB	—	—	0.6	MHz	
	Max. output voltage+	VOM+	4.75	4.97	5.25	V	
	Max. output voltage-	VOM-	0	280	400	mV	
	Output sink current	IOM+	3.9	5.5	20.0	mA	VFB = 2.5 V
	Output source current	IOM-	-1.5	-1.1	-0.8	mA	VIN1 = 1 V, VIN2 = 1 V
	Reference voltage of amp	V _{RA}	1.225	1.250	1.275	V	
OSC. block	Oscillation frequency	f _{OSC}	73	105	137	kHz	
	OSC. upper limit voltage	VOSCH	3.255	3.500	3.745	V	
	OSC. lower limit voltage	VOSCL	1.395	1.500	1.605	V	
UVLO block	ON threshold voltage	VTH ON	7.998	8.600	9.202	V	
	OFF threshold voltage	VTH OFF	7.068	7.600	8.132	V	
	Hysteresis	VHYS	0.8	1.0	1.2	mV	VHYS = VTHON – VTHOFF
Short circuit protect. block	SCP threshold voltage	VTH SCP	4.75	5.00	5.25	V	VIN1 = 1 V, VIN2 = 1 V
	SCP term. output current	ISCPOUT	-26	-20	-14	μA	
	FB threshold voltage	VTH FB	3.99	4.20	4.41	V	
Output	Maximum ON duty	Dutymax	85	90	95	%	
	Output low voltage	VOL1	0.00	0.05	0.40	V	$V_{CC} = 12 \text{ V}, I_0 = 10 \text{ mA}$
		VOL2	0.00	0.80	1.40	V	$V_{CC} = 12 \text{ V}, I_{O} = 100 \text{ mA}$
	Output high voltage	VOH1	10.0	10.5	12.0	V	$V_{CC} = 12 \text{ V}, I_0 = -10 \text{ mA}$
		VOH2	9.5	10.0	12.0	V	$V_{CC} = 12 \text{ V}, I_0 = -100 \text{ mA}$
CLM	CLM threshold voltage	VTHCLM	180	200	220	mV	
	CLM flow-out current	IOUTCLM	-290	-225	-150	μA	
	CLM delay time	TPDCLM		100		ns	Delay time to out terminal

Application Circuit

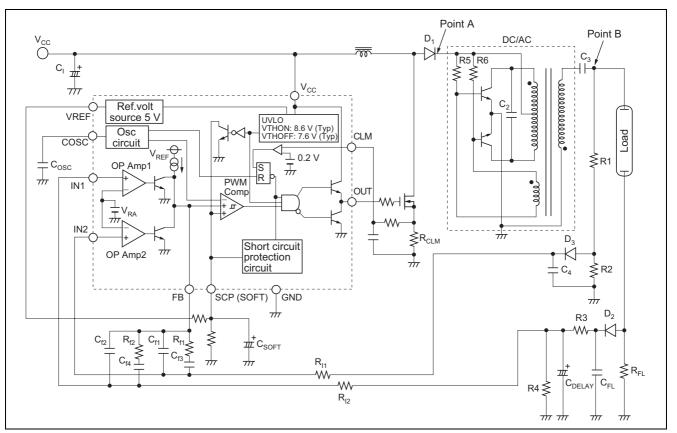
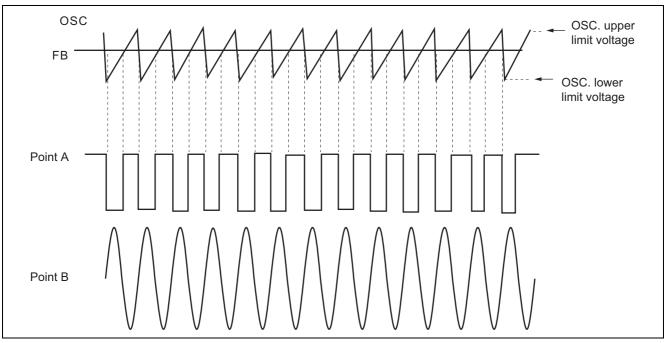



Figure 1 Application Circuit Example

1. Priority Function

As far as OP Amp1 and OP Amp2 are concerned, there is no problem when either IN1 or IN2 is used to control current, since the setting up to lower the output voltage of the DC/DC converter is prioritized.

1) In the application circuit in Figure 3, V_01 is set to 24 V and V_02 is set to 15 V for each output voltage. When SW is turned off, output voltage is feed backed to IN1 with R1 and R2.

Output voltage V₀ is calculated with the following equation,

 $V_{O} = V_{RA} \times (R1 + R2) / R2$ (V_{RA} = 1.25 V typ.)

and V_01 set to 24 V.

If SW is turned on, this IC controls with priority to lower the output voltage, so output voltage is feed backed to IN2 with R3 and R4.

Output voltage V_o is calculated with the following equation, $V_o = V_{RA} \times (R3 + R4) / R4$ (V_{RA} = 1.25 V typ.)

and $V_0 2$ set to 15 V.

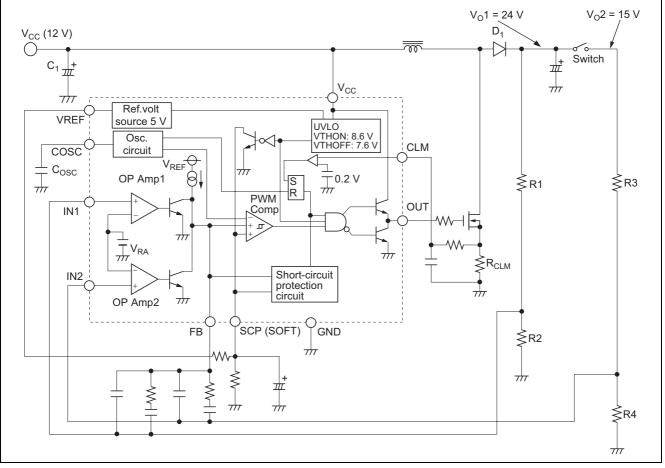


Figure 3 Application Circuit Example

2. Soft Start Function, Maximum ON Duty Setting and Short-circuit Protection

1) Soft start function (Refer to Figure 4 for its application circuit)

When power supply is turned on, FB terminal is fixed to high level since IN1, IN2 are on GND level. Voltage level of SCP terminal gradually rises up from 0 V, because the internal charge current and the current flowing from the resistors dividing VREF are charged to C_{SCP} .

When SCP terminal voltage reaches to the lower limit voltage of triangular waveform, output starts to operate making DC/DC converter output voltage V_0 rise up.

Soft start time is calculated by the following equation, (Internal charge current is designed as approx. $20 \,\mu\text{A}$)

$$VSCP = \frac{5 \bullet R2 + 20 \ \mu A \bullet R1 \bullet R2}{(R1 + R2)} - \frac{5 \bullet R2 + 20 \ \mu A \bullet R1 \bullet R2}{(R1 + R2)} \bullet e^{-\frac{(R1 + R2)}{C \bullet R1 \bullet R2}t}$$

Note: VSCP in this case is the voltage when output starts to operate. (equal to lower limit voltage of triangular waveform)

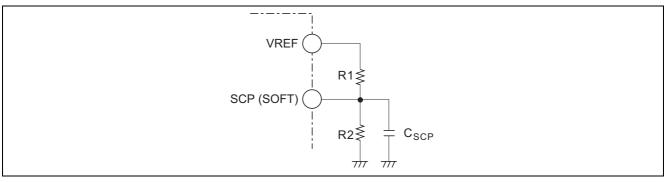


Figure 4

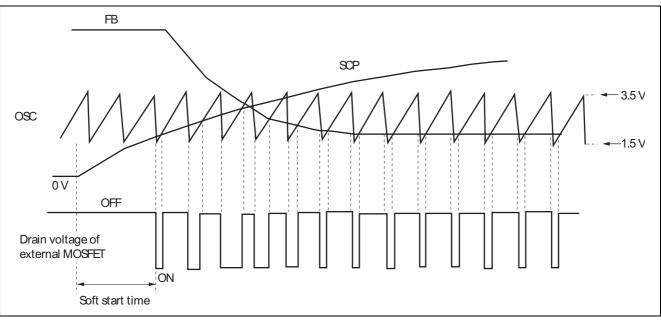


Figure 5

M62215FP

2) Setting for maximum ON duty

Maximum ON duty is set by the voltage applied to SCP terminal, and this is the divided voltage of VREF by resistors.

The internal circuit of SCP terminal has discharge circuit working before start-up and during output latch period (output is off) in over current mode so that soft start never fails to work when restarting.

SCP terminal also works as timer latch setting at over current or when output is short-circuited, so the way of setting differs depending upon whether or not timer latch at over current is used.

- when timer latch is used
- In this case, charge current of SCP terminal is set to approx. 20 μ A, R2 should be approx. 330 k Ω or more.
- when timer latch is not used

R2 should be approx. 180 k Ω or less.

3) Short-circuit protection

It is timer latch system that is applied for short-circuit protection circuit, and timer latch time is set by the capacitance for soft start connected to SCP terminal.

Short-circuit protection circuit is shown in Figure 7 and the timing chart for each mode in Figure 6.

When power is turned on, FB terminal voltage is high (approx. 4.6 V), SCP terminal voltage low. (gradually rising from 0 V)

Approximately 20 μ A current flows out to make the potential of SCP terminal go to high with time constant set by resistors and capacitor connected to VREF terminal.

This 20 μ A current continues to flow out to SCP terminal if FB terminal voltage is high and doesn't go down to the control state. (FB terminal is 4.2 V or more)

SCP terminal voltage rises, by this 20 μ A charge current, from the divided voltage of VREF by resistors.

System starts up when FB terminal voltage goes down to under control state voltage (4.2V or less) before that of SCP terminal goes to 5 V.

When output is short-circuited, whether starts up or latched depends upon how long it takes for FB terminal voltage to go down to control state from High potential. (Refer to mode [V], [VI] for details)

There are two ways to go back to operation after latch to shut output off.

Either method can get the system to redstart by soft start.

- 1. Turn V_{CC} on again.
- 2. Make FB terminal voltage 4.2 V or less for cancellation.

Timer time for short-circuit protection depends on the time constant shown below.

$$VSCP = \frac{5 \bullet R2 + 20 \ \mu A \bullet R1 \bullet R2}{(R1 + R2)} - 20 \ \mu A \bullet R1 \bullet R2 \bullet e^{-\frac{(R1 + R2)}{C \bullet R1 \bullet R2} t}$$

Note: This VSCP means SCP terminal "H" threshold voltage.

[Operation description by mode]

Mode [I] Start-up

The potential of FB terminal goes down to the control state before that of SCP terminal goes to SCP terminal "H" threshold voltage. (approx. 5 V)

Mode [II].....Over-current \rightarrow Latch

When the over current flows in the system and CLM terminal voltage goes up to CLM term. threshold voltage, approximately 20 μ A charge current flows out from SCP term. This charge current makes the potential of SCP term. high. Output will be off (latched) when the potential of SCP term. reaches SCP term. "H" threshold voltage.

Mode [III]Latch canceled \rightarrow restart

The latch is canceled and the system is restarted when the potential of FB terminal is set lower than FB term. threshold voltage.

More [IV].....Over-current \rightarrow recovery

The potential of SCP term. goes up by over current. The output is not turned off, because the potential of FB terminal goes down to lower than its threshold voltage before that of SCP term. reaches SCP term. "H" threshold voltage and also the latch-state is canceled.

Mode [V]Turning ON the V_{CC} again

The mode in which V_{CC} is again turned on.

Mode [VI].....Start-up \rightarrow Latch

At the start-up, the output is turned off, because the potential of FB term. doesn't go down to its threshold voltage due to output short-circuit before the potential of SCP term. reaches SCP "H" threshold voltage.

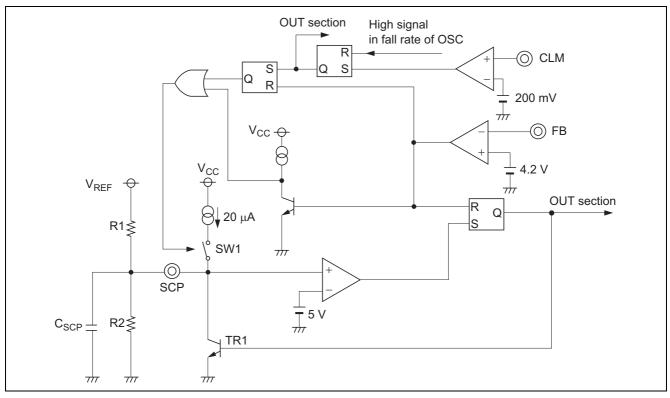
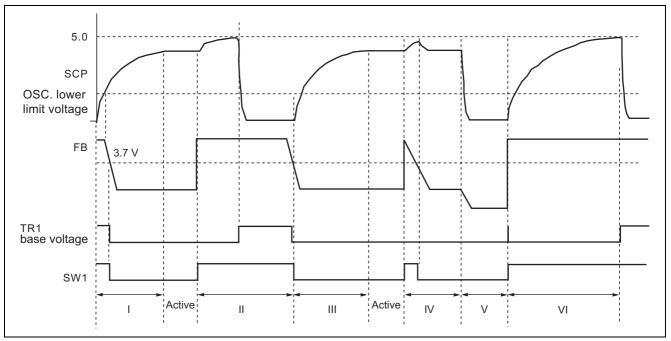
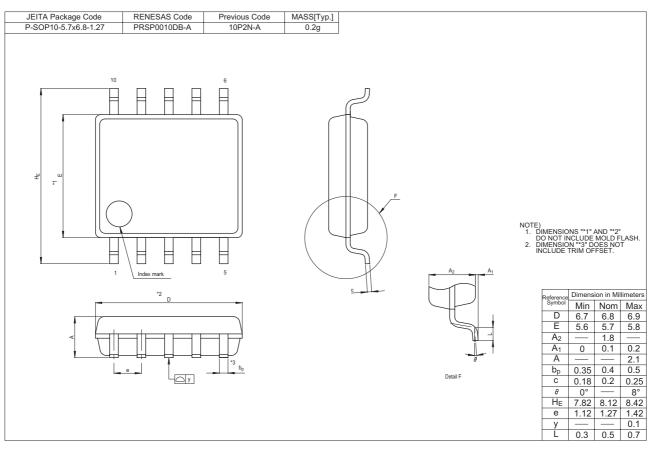


Figure 6 Schematic Diagram of SCP Section




Figure 7 SCP Timing Chart

4) Oscillation frequency

Oscillation frequency is set by capacitance connected to OSC terminal. Oscillating triangular waveform: Charge time: Discharge time = 9:1 Oscillation frequency (f_{OSC}) is given as:

$$f_{OSC} \approx \frac{1}{23.62 \times 10^3 \times C + 9 \times 10^{-7}}$$

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the burgose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, buch as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, buch as product data, diagrams, charts, programs, algorithms, and application incluit examples, is current as of the date their document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a fast of the date different information in the date their document.
 When using or otherwise regulations in the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a different information in this document.
 When using or otherwise regulations in the information in the date their document.
 When using or otherwise regulations in the failure of a motification and traffic to the sease as products are not designed publication control. Accross are no

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com